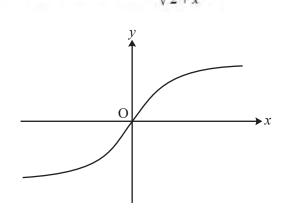
1 Find the exact value of $\int_{-\infty}^{2} x^3 \ln x \, dx$.

2 Fig. 8 shows the curve y = f(x), where $f(x) = \frac{x}{\sqrt{2+x^2}}$



(i) Show algebraically that $f(x)$ is an odd function. Interpret this result geometrically.	[3]
(ii) Show that $f'(x) = \frac{2}{(2+x^2)^{\frac{3}{2}}}$. Hence find the exact gradient of the curve at the origin.	[5]

(iii) Find the exact area of the region bounded by the curve, the x-axis and the line x = 1. [4]

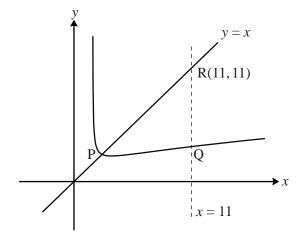
(iv) (A) Show that if
$$y = \frac{x}{\sqrt{2+x^2}}$$
, then $\frac{1}{y^2} = \frac{2}{x^2} + 1$. [2]

(B) Differentiate $\frac{1}{y^2} = \frac{2}{x^2} + 1$ implicitly to show that $\frac{dy}{dx} = \frac{2y^3}{x^3}$. Explain why this expression cannot be used to find the gradient of the curve at the origin. [4]

3 Evaluate $\int_0^3 x(x+1)^{-\frac{1}{2}} dx$, giving your answer as an exact fraction. [5]

4 Show that
$$\int_{0}^{\frac{\pi}{2}} x \cos \frac{1}{2} x \, dx = \frac{\sqrt{2}}{2} \pi + 2\sqrt{2} - 4.$$
 [5]

5 Fig. 8 shows the curve $y = \frac{x}{\sqrt{x-2}}$, together with the lines y = x and x = 11. The curve meets these lines at P and Q respectively. R is the point (11, 11).



- (i) Verify that the *x*-coordinate of P is 3.
- (ii) Show that, for the curve, $\frac{dy}{dx} = \frac{x-4}{2(x-2)^{\frac{3}{2}}}$.

Hence find the gradient of the curve at P. Use the result to show that the curve is **not** symmetrical about y = x. [7]

[2]

(iii) Using the substitution u = x - 2, show that $\int_{3}^{11} \frac{x}{\sqrt{x - 2}} dx = 25\frac{1}{3}$.

Hence find the area of the region PQR bounded by the curve and the lines y = x and x = 11. [9]