1 Find the exact value of $\int^{2} x^{3} \ln x \mathrm{~d} x$.

2 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{x}{\sqrt{2+x^{2}}}$

Fig. 8
(i) Show algebraically that $\mathrm{f}(x)$ is an odd function. Interpret this result geometrically.
(ii) Show that $\mathrm{f}^{\prime}(x)=\frac{2}{\left(2+x^{2}\right)^{\frac{3}{2}}}$. Hence find the exact gradient of the curve at the origin.
(iii) Find the exact area of the region bounded by the curve, the x-axis and the line $x=1$.
(iv) (A) Show that if $y=\frac{x}{\sqrt{2+x^{2}}}$, then $\frac{1}{y^{2}}=\frac{2}{x^{2}}+1$.
(B) Differentiate $\frac{1}{y^{2}}=\frac{2}{x^{2}}+1$ implicitly to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y^{3}}{x^{3}}$. Explain why this expression cannot be used to find the gradient of the curve at the origin.

3 Evaluate $\int_{0}^{3} x(x+1)^{-\frac{1}{2}} \mathrm{~d} x$, giving your answer as an exact fraction.

4 Show that $\int_{0}^{\frac{\pi}{2}} x \cos \frac{1}{2} x \mathrm{~d} x=\frac{\sqrt{2}}{2} \pi+2 \sqrt{2}-4$.

5 Fig. 8 shows the curve $y=\frac{x}{\sqrt{x-2}}$, together with the lines $y=x$ and $x=11$. The curve meets these lines at P and Q respectively. R is the point $(11,11)$.

Fig. 8
(i) Verify that the x-coordinate of P is 3 .
(ii) Show that, for the curve, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-4}{2(x-2)^{\frac{3}{2}}}$.

Hence find the gradient of the curve at P . Use the result to show that the curve is not symmetrical about $y=x$.
(iii) Using the substitution $u=x-2$, show that $\int_{3}^{11} \frac{x}{\sqrt{x-2}} \mathrm{~d} x=25 \frac{1}{3}$.

Hence find the area of the region PQR bounded by the curve and the lines $y=x$ and $x=11$.

